Code: EE4T1

II B.Tech - II Semester - Regular/Supplementary Examinations -

 April 2017
COMPLEX VARIABLES \& SPECIAL FUNCTIONS (ELECTRICAL \& ELECTRONICS ENGINEERING)

Duration: 3 hours
Max. Marks: 70
PART - A

Answer all the questions. All questions carry equal marks
$11 \times 2=22$
1.
a) Prove that $\mathrm{f}(\mathrm{z})=\bar{z}$ is not analytic at any point.
b) Separate the real and imaginary parts of $\cot \mathrm{z}$.
c) Define analytic and entire functions.
d) Obtain the Taylor series expansion e^{1+z} in the powers of $\mathrm{z}-1$.
e) Evaluate $\int_{(0.0)}^{(1.1)}\left(3 x^{2}+4 x y+i x^{2}\right) d z$ along $\mathrm{y}=\mathrm{x}^{2}$
f) Find the Residue $f(z)=\frac{z^{3}}{z^{2}-1}$ at $\mathbf{z}=1$
g) Find the poles and residue at each pole of $\frac{z}{z^{2}-4}$
h) Define conformal transformation.
i) Find the region in the w - plane in which the rectangle bounded by the lines $\mathrm{x}=0, \mathrm{y}=0, \mathrm{x}=2$, and $\mathrm{y}=1$ is mapped under the transformation $w=z+(2+3 i)$
j) Express $\mathrm{J}_{3}(x)$ in terms of J_{0} and J_{1}
k) Show that $P_{n}(1)=1$ and $\mathrm{P}_{\mathrm{n}}(-1)=(-1)^{\mathrm{n}}$
PART - B

Answer any THREE questions. All questions carry equal marks.

$$
3 \times 16=48 \mathrm{M}
$$

2. a) If $f(z)$ is an analytic function, show that

$$
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}
$$

b) If $f(Z)=u+i v$ is an analytic function of Z and if $\mathrm{u}-\mathrm{v}=e^{x}(\cos y-\sin y)$, find $\mathrm{f}(\mathrm{z})$ in terms of $\mathrm{z} . \quad 8 \mathrm{M}$
3. a) Evaluate $\int \frac{z^{2}-2 z-2 d z}{\left(z^{2}+1\right)^{2} z}$ where c is $|z-i|=1 / 2$ using Cauchy's integral formula.
b) Expand $\frac{1}{\left(z^{2}-3 z+2\right)}$ in the region
i) $0<|z-1|<1$
ii) $1<|\mathrm{z}|<2$.
4. a) i) Evaluate $\int_{c} \frac{\left(\sin \pi z^{2}+\cos \pi z^{2}\right) d z}{(z-1)^{2}(z-2)}$ where c is the circle $|\mathrm{z}|=3$ using residue theorem.
ii) Find the poles $\frac{e^{k}}{z^{2}+1}$ and corresponding residues. 4 M
b) Evaluate by residue theorem $\int_{0}^{2 \pi} \frac{d \theta}{2+\operatorname{Cos} \theta}$.
5. a) Prove that the transformation $w=\sin z$ maps the families of lines $\mathrm{x}=$ constant and $\mathrm{y}=$ constant in to two families of confocal central conics.
b) Find the image of the infinite strip $o<y<\frac{1}{2}$ under the transformation $w=\frac{1}{z}$
6. a) Show that $\frac{n}{x} J_{n}(x)-J_{n}^{\prime}(x)=J_{n+1}(x) \quad 8 \mathrm{M}$
b) Show that $\int_{-1}^{1} x^{2} P_{n-1}(x) P_{n+1}(x) d x=\frac{2 n(n+1)}{(2 n-1)(2 n+1)(2 n+3)} \quad 8 \mathrm{M}$

